Генетическое изучение микроорганизмов, создавшее фундамент для современной селекции, стало возможным только, когда были разработаны способы выделения клоновых культур, или клонов.
Клон — это генетически однородное потомство одной клетки, например колония, возникшая из одной клетки при рассеве культуры на плотной питательной среде. Исследуя свойства такой колонии, можно получить представление и о признаках породившей ее клетки.
Важно отметить, что при последующих пересевах клоновой культуры в результате процесса изменчивости могут появиться варианты, отличающиеся от исходного. И тогда клоновая культура клеток превращается в генетически разнородную клеточную популяцию. Клоновая по происхождению культура, наследственная однородность которой поддерживается отбором по специфическим признакам, называется штаммом. Получение и поддержание высокопродуктивных штаммов — основная задача селекционной работы.
Важнейшим методом селекции микроорганизмов является отбор мутантов, т. е. организмов с измененными наследственными признаками, которые появляются в результате мутаций. В самом широком смысле мутацию можно определить как внезапно возникающее наследуемое изменение в генетическом материале клетки. Следует различать мутации цитоплазматические, затрагивающие внехромосомные генетические детерминанты, и ядерные, или хромосомные.
В свою очередь, хромосомные мутации можно разделить на три основных типа: 1) изменение числа хромосом; 2) изменение числа и порядка расположения генов (перестройки хромосом или структурные изменения); 3) изменения индивидуальных генов (внутригенные изменения, или мутации в наиболее узком смысле этого слова) (Ш. Ауэрбах, 1978). В селекции микроорганизмов основное значение имеют последние два типа мутаций.
Хромосомные перестройки включают: выпадения участков хромосомы (делении), удвоения (дупликации) или умножения (амплификации) числа отдельных генов или группы генов, вставки участков хромосом в новые места (транспозиции), обмен участками между хромосомами (транслокации), изменения порядка расположения генов на хромосоме (инверсии). Такие мутации могут вызывать как утрату функций, так и приобретение новых признаков, в частности в связи со слиянием генов, которые могут оказаться под контролем несвойственных им регуляторных элементов. При этом могут появиться гибридные белки, увеличиться (уменьшиться) количество продуктов определенных генов. За исключением амплификации, псе хромосомные перестройки стабильны.
Внутригенные мутации изменяют последовательность оснований ДНК в пределах одного гена. Это могут быть выпадения или вставки одного или нескольких оснований, нарушающие порядок считывания гена в процессе трансляции. В клетках такого типа мутанта синтезируется неактивный белок с измененной последовательностью аминокислот. При транзициях происходит замена какого-либо одного пурина или пиримидина (тимина или цитозина) на другой пурин или пиримидин соответственно. При трансверсиях пуриновые основания заменяются на одно из двух пиримидиновых и, наоборот, пиримидиновое основание — на одно из двух пуриновых.
Важной характеристикой мутантов является их способность, к реверсии, т. е. обратному мутированию к исходному фенотипу. Мутанты, которые появляются в результате реверсии, называются ревертантами. При истинных обратных мутациях в ДНК восстанавливается исходная последовательность оснований. Так ревертируют точковые мутации — замены оснований, вставки или выпадения одного или нескольких нуклеотидов.
Кроме того, реверсии могут произойти благодаря супрессорным мутациям. При внутригенной супрессии вторая мутация возникает в том же гене, что и первичная мутация, и приводит к более или менее полному восстановлению функции белка. При внегенной супрессии вторая мутация затрагивает другой ген. Так, ошибки кодирования, связанные с нонсенс-мутациями и некоторыми мутациями со сдвигом рамки, могут частично исправляться мутациями в генах, кодирующих РНК Восстановленная активность поврежденного белка при этом обычно не превышает 10 % от исходного уровня.
Когда невозможно провести прямой отбор мутантов, исследуют колонии на индикаторных чашках, применяют тесткультуры микроорганизмов или перепечатывают колонии на различные среды, т. е. используют метод отпечатков, или реплик. Иногда приходится выращивать каждую колонию и определять в культуральной жидкости интересующую активность. Индикаторные чашки дают возможность различать мутанты по цвету колоний и проводить тестирование разнообразных фенотипов в больших популяциях. Такие чашки могут содержать среды с индикатором, выявляющим различие в рН между теми колониями, которые метаболизируют определенные углеводы, и теми, которые не обладают такой способностью. Так, на агаре с трифенилтетразолием колонии, не сбраживающие лактозу, приобретают ярко-красный цвет, а колонии, сбраживающие этот дисахарид, остаются неокрашенными. Используются также специально приготовленные субстраты, распадающиеся с образованием красителя при их гидролизе ферментами, наличие которых тестируется на этих чашках. Иногда вносят субстраты, изменяющие прозрачность сред, и наблюдают образование вокруг колоний мутантов зон просветления.
Прочие статьи:
Эмбриология
Сходство зародышей. Все многоклеточные организмы развиваются из оплодотворенного яйца. Процессы оплодотворения и развития зародышей различных животных протекают во многом сходно. Подобные факты можно объяснить только общим происхождением ...
Биосфера В.И.Вернадского
Примерно 3,5-4,0 млрд. лет тому назад, после остывания отдельных участков поверхности земли в местах соприкосновения их с пространством Вселенной, на фоне активных физико-химических процессов зародилась жизнь. Учитывая особую важность био ...
Методы стерилизации
Стерилизация или обеспложивание (от лат. sterilis - бесплодный), это полное уничтожение клеток микроорганизмов в питательных средах, посуде и пр.
Известно несколько методов стерилизации. Чаще всего применяют стерилизацию нагреванием.
1. ...